
Semi-Honest Security
CS 598 DH

Today’s objectives

Review probability distributions/ensembles

Define negligible functions

Introduce indistinguishability

Formalize semi-honest security

2

x y

Crypto
Magicf(x, y) f(x, y)

f

Privacy

Authenticity

3

Real

OutputSim
Bob(x, y) = { y, m0, m1, ... }

Ideal

ViewΠ
Bob(x, y) = { y, m0, m1, ... }

These should “look the same”
4

Simulator

5

guess(x : {0,1}n):
 return false

secret <-$ {0,1}n

guess(x : {0,1}n):
 return x = secret

6

guess(x : {0,1}n):
 return false

secret <-$ {0,1}n

guess(x : {0,1}n):
 return x = secret

uniformly sample
“Flip n coins at start-up”

There is a sense in which these two
programs are the same

7

guess(x : {0,1}n):
 return false

secret <-$ {0,1}n

guess(x : {0,1}n):
 return x = secret

uniformly sample
“Flip n coins at start-up”

As n increases, the programs become
harder and harder to tell apart

8

guess(x : {0,1}n):
 return 0

secret <-$ {0,1}n

guess(x : {0,1}n):
 return x = secret

Ex
pe

ct
ed

O

ut
pu

t

0
0.25

0.5
0.75

1

Input

0 1

n = 1

Ex
pe

ct
ed

O

ut
pu

t

0
0.25
0.5

0.75
1

Input

0 1

9

guess(x : {0,1}n):
 return 0

secret <-$ {0,1}n

guess(x : {0,1}n):
 return x = secret

Ex
pe

ct
ed

O

ut
pu

t

0
0.25

0.5
0.75

1

Input

0 1 2 3

n = 2

Ex
pe

ct
ed

O

ut
pu

t

0
0.25
0.5

0.75
1

Input

0 1 2 3

10

guess(x : {0,1}n):
 return 0

secret <-$ {0,1}n

guess(x : {0,1}n):
 return x = secret

Ex
pe

ct
ed

O

ut
pu

t

0
0.25

0.5
0.75

1

Input

0 1 2 3 4 5 6 7

n = 3

Ex
pe

ct
ed

O

ut
pu

t

0
0.25
0.5

0.75
1

Input

0 1 2 3 4 5 6 7

11

guess(x : {0,1}n):
 return 0

secret <-$ {0,1}n

guess(x : {0,1}n):
 return x = secret

Ex
pe

ct
ed

O

ut
pu

t

0
0.25

0.5
0.75

1

Input

0 1 2 3 4 5 6 7 8 9 101112131415

Ex
pe

ct
ed

O

ut
pu

t

0
0.25
0.5

0.75
1

Input

0 1 2 3 4 5 6 7 8 9 101112131415

n = 4

12

secret <-$ {0,1}n

guess(x : {0,1}n):
 return x = secret

A (randomized) program can be viewed as the
description of some distribution

guess(x : {0,1}n):
 return 0

Some programs that look very different can
describe very similar distributions

13

(Discrete) Probability Distribution

(Discrete) Uniform Distribution
A probability distribution where each

outcome is equally likely.

The probability distribution associated with a random
variable is a function mapping input to the

probability that takes value
X x

X x

14

0

0.25

0.5

0.75

1

0 Heads 1 Head 2 Heads

Flip two
fair coins

(Discrete) Probability Distribution
The probability distribution associated with a random

variable is a function mapping input to the
probability that takes value
X x

X x

Probability Ensemble

A Probability Ensemble is a family of random variables,
indexed by a natural number

X = { Xn }n∈ℕ

A Probability Ensemble is a family of random variables,
indexed by a natural number

X = { Xn }n∈ℕ

Hint: asymptotic behavior. How does this random variable
change as we increase n?

Probability Ensemble

0
0.25

0.5
0.75

1

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

…

A Probability Ensemble is a family of random variables,
indexed by a natural number

Probability Ensemble

Number of heads as we increase the number of coin flips

ViewΠ
Bob(x, y) = { y, m0, m1, ... }

18

These ensembles are hard to tell apart

OutputSim
Bob(x, y) = { y, m0, m1, ... }

ViewΠ
Bob(x, y) = { y, m0, m1, ... }

19

“No efficient algorithm can tell these two things apart”

OutputSim
Bob(x, y) = { y, m0, m1, ... }

Three notions of “hard to tell apart”

Identically distributed

Statistically close

Indistinguishable

ViewΠ
Bob(x, y) = { y, m0, m1, ... }

20

“No efficient algorithm can tell these two things apart”

OutputSim
Bob(x, y) = { y, m0, m1, ... }

Three notions of “hard to tell apart”

Identically distributed

Statistically close

Indistinguishable

As we increase a parameter, the distributions quickly
become close together.

As we increase a parameter, it quickly becomes
difficult for programs to tell the distributions apart.

Negligible Function

A function is negligible if for any positive polynomial
 there exists an such that for all :

μ
p N n > N

μ(n) <
1

p(n)

“ approaches zero really fast”μ

Negligible Function

A function is negligible if for any positive polynomial
 there exists an such that for all :

μ
p N n > N

μ(n) <
1

p(n)

μ(n) =
1
2n

Canonical example:

Negligible Function
A function is negligible if for any positive polynomial

 there exists an such that for all :
μ

p N n > N

μ(n) <
1

p(n)
μ(n)

Negligible Function
A function is negligible if for any positive polynomial

 there exists an such that for all :
μ

p N n > N

μ(n) <
1

p(n)
μ(n)

1
p(n)

Negligible Function
A function is negligible if for any positive polynomial

 there exists an such that for all :
μ

p N n > N

μ(n) <
1

p(n)
μ(n)

1
p(n) N

Statistically Close

Statistical Distance

Δ(X, Y) =
1
2 ∑

α∈Domain

Pr[X = α] − Pr[Y = α]

Statistically Close

Statistical Distance

Δ(X, Y) =
1
2 ∑

α∈Domain

Pr[X = α] − Pr[Y = α]

Ensembles and are statistically close if the
following is a negligible function:

{ Xn } { Yn }

f(n) = Δ(Xn, Yn)

Indistinguishability

Let be ensembles.
We say that and are computationally indistinguishable
if for every (non-uniform) polynomial-time program , the

following function is negligible:

X, Y
X Y

𝒟

δ(n) = (Pr
x←Xn

[𝒟(x) = 1]) − (Pr
y←Yn

[𝒟(y) = 1])

ViewΠ
Bob(x, y) = { y, m0, m1, ... }

29

“No efficient algorithm can tell these two things apart”

OutputSim
Bob(x, y) = { y, m0, m1, ... }

Three notions of “hard to tell apart”

Identically distributed

Statistically close

Indistinguishable

As we increase a parameter, the distributions quickly
become close together.

As we increase a parameter, it quickly becomes
difficult for programs to tell the distributions apart.

X ≡ Y

X ≈ Y

X c= Y

30

guess(x : {0,1}n):
 return false

secret <-$ {0,1}n

guess(x : {0,1}n):
 return x = secret

uniformly sample
“Flip n coins at start-up”

In which sense are these two programs
are the same?

Two-Party Semi-Honest Security

for deterministic functionalities

Let be a function. We say that a protocol securely
computes in the presence of a semi-honest adversary if

for each party there exists a polynomial time
simulator such that for all inputs :

f Π
f

i ∈ {0,1}
𝒮i x0, x1

ViewΠ
i (x0, x1)

c= 𝒮i(xi, f(x0, x1))

x ⊕ y

32

x ⊕ y
x y

x
y

x ⊕ y

33

x ⊕ y
x y

x
y

ViewΠ
Bob(x, y) = {x, y}

SimΠ
Bob(x, x ⊕ y) = {x, (x ⊕ y) ⊕ y}

x ⊕ y

34

x ⊕ y
x y

x
y

ViewΠ
Bob(x, y) = {x, y}

SimΠ
Bob(x, x ⊕ y) = {x, (x ⊕ y) ⊕ y}

≡

x ⊕ y

35

x ⊕ y
x y

x
y

ViewΠ
Bob(x, y) = {x, y}

SimΠ
Bob(x, x ⊕ y) = {x, z ; z ←$ {0,1}}

Exercise: Is this a good simulator?

Lesson:

Inputs are not random. In general, we do not make
assumptions about how inputs are distributed

We should assume the adversary might have side
information about the input.

Today’s objectives

Review probability distributions/ensembles

Define negligible functions

Introduce indistinguishability

Formalize semi-honest security

38

